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ABSTRACT

Facial analysis is used in a number of applications like face
recognition systems, human-computer interaction through head
movements or facial expressions, or model based coding. In all
these applications a very precise extraction of the feature points
corresponding to the eyes is necessary. In this paper we present a
method for automatic extraction and tracking of the eyelids. First
the images are filtered in order to enhance the interesting
features. Then a dynamic programming algorithm is applied to
extract the precise shape of the eyelids. Although restrictions are
applied on the possible shapes, they are not modeled as ellipse
arcs. This allows extracting the corner of the eyes with higher
precision. Once the eyelids are extracted for the first image, a
new robust tracking algorithm based on snakes is applied to track
them along the sequence, which allows large motion of the eyes
and rotation and zooming of the head.

1. INTRODUCTION

Many systems have been presented in the literature that require a
precise location of the eyelids, whether for still images or for
sequences. Among them we can cite face recognition based on
facial features [3], facial analysis for emotion or gesture
estimation {5], or facial analysis for model adaptation in a model
based video coding system [15]. For instance, many systcms
which aim at computing the 3D motion of the head use as feature
points for this computation the relative position of the corner of
the eyes [8]. For this kind of applications it is necessary to have a
very precise detection and the tracking has to be robust to large
local motion (eye blinking is the most frequent motion) and to
rotation and translation of the head. However, most of the
systems proposcd for eye detection and tracking are based on
simple models or templates of the eyes [18][4]. These models
usually assume that the eye can be described by two semi-
ellipses, which is true for frontal faces with open eyes, but leads
to errors when dealing with a broader class of images (see Figure
2 for examples).

We distinguish in this paper two procedures: one for the
detection of the eyes in the first image and another one for
tracking. For the detection step the eyes are modeled with a more
general template which simply assumes that the eyelids are two
curves, the upper with only one maximum and the lower with
only one minimum. To find these curves a minimal path is
searched on a previously filtered image, using a dynamic
programming algorithm. For tracking we propose a method based
on active contours or snakes which introduces motion estimation
in the energy minimization procedure.
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The resulting method is able to detect and track eyes with various
shapes and supports blinking, rotation and translation of the
head.

This paper is organized as follows. In Section 2 we will present
the eye detection procedure. Section 3 describes the tracking and
Section 4 presents the results. Finally we summarize our major
findings.

2. EYE DETECTION
2.1 Rough location of the eyes

Before the precise detection of the eyelids is carried out a rough
location of the eyes position is neccssary. Many systems can be
used for this aim. We have used the one presented in {12). First,
the face is extracted from the scene using [16]. Then, a
morphological filtering is applied to extract contrasted
components of a given size. Among these components we can
find the eyes, mouth and usually the eyebrows. They will be
identified using a priori knowledge about geometry of the
searched features. That is, we look for a set of components
following a specific spatial configuration. This procedure allows
identifying the location of the eyes, eyebrows and mouth.

2.2 Definition of the search area

The minimal paths to define the eyelids are searched in the area
where the eyes are presumably located. However, it is necessary
to restrict this area as much as possible in order to minimize the
necessary computations. For this aim, the dark contrasted
components (which usually include the pupils and eyelids) are
combined with the white contrasted components (the white of the
cyes). These two scts of components define the area where the
search will take place.

The dark contrasted component of the eye which has been
extracted in the previous step to locate the different features is
used. Then, the white contrasted component is computed with a
top hat {14]. For the kind of images that we have used, CIF
images (350x286 pixels) in which the face occupies most part of
it, a 5x5 structuring element has been used. A threshold is
applied on this top hat image, and those pixels that are larger
than this threshold are selected as belonging to the white area of
the eyes. This result is going to be used for two aims. First, to
define with higher precision the limits of the search area for the
minimal path. And second, to avoid these areas in the minimal
path computation. For this aim the original image is modified so
that all the paths which cross this white contrasted component
have a maximal cost.
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Figure 1. Original, dark contrasted components and clear
contrasted components

2.3 Minimal path algorithm

The minimal path algorithm used to tind the eyelids was alrcady
used in [12] to find the outline of the face. To apply this
algorithm the two extreme positions (that is, the two corners of
the eyes in this case) are necessary. As we only have approximate
knowledge of the position of these corners we will make an
exhaustive search for them. That is, the minimal path algorithm
will be applied for cvery couple of candidate corner points. The
couple of corner points leading to the minimal path will be
selected as the correct one.

A first approximation to the eyes corner points is extracted using
deformable line templates [2]. Specific patterns corresponding to
the cye shape are searched for within the selected eye zone. The
patterns used allow certain deformation, so that the detected eyes
do not need to have a size or opening previously defined. The
pattern consists of 3 ordered segments. Each segment is defined
by an ordered sct of elements. Segments cannot deform, but the
best configuration of the 3 segments is found inside the detected
eye component, so that it better matches the upper eyelid line in
the original image. We will consider as candidates all the pixels
in a small area around the corners extracted using this
approximation. In the following we will describe the minimal
path algorithm,

Let us call the right and left corners A and B. Two minimal path
between them are computed, using dynamic programming
algorithms [17], one for the upper eyelid and the other for the
lower. The knowledge about the position and shape of the eyelids
is used in order to restrict the possible paths. This knowledge
consists of the facts that the path must be a descending path up to
a horizontal position around the mid point between A and B, and
ascending after this point for the lower eyelid and viceversa for
the upper eyelid.

Let us call the image where the algorithm is going to be applied
I. The minimal path P is defined as a path between A and B
which minimizes the cost C)(P), where C,(P) is the sum of all the
cdge values of the path, and which fulfills the previous condition.
The transition value between two neighboring pixels p and g is 7
(p.q)=1(p)+1(g). The distance d; between two pixels p and q is
defined as dy(p,q)= min{C(P), P path between p and gq}. The
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steps that are followed to compute the optimum path are the
following:

e Initialize distance d)(A,p)=0 if p=A and Inf otherwise.

e Initialize distance di(B,p)=0 if p=B and Inf otherwise.

e Scan the image in raster order, and assign dfA,p)=
min{dfA,q)+Tip,q), g € N*(p)}, where N*(p) denotes the
neighbors of pixel p scanned before p in a raster scan of
image /.

e  Scan the image from right to left and top to bottom, and
assign dy(B,p)= min{d)(B,q)+T; (p,q), ¢ € N (p)}, where N’
(p) denotes the neighbors of pixel p scanned before p in the
defined scanning order.

e A pixel C is searched which minimizes the distance

df(A,C)+d(B,C). This search is only made in a specific
(central zone between A and B). Once this central position
has been found, the whole path is defined backtracking the
minimal path from Cto A and B. '

This algorithm provides the minimal lower path from A to B. In a
similar fashion the minimal upper path from A to B is computed.
Its costs are added, and the couple (A,B) which produces the
lower cost is sclected, and the minimal paths between them are
taken as the eyelids.

The advantage of this algorithm is that it constraints only slightly
the shape of the cyes, thus allowing a more precise location.
Errors in the localization of the eyes occur when the size of the
eyes is outside the margins allowed in the initial templates.

3. EYE TRACKING

The eyes are tracked using an adaptation of the active contour
algorithm (snakes) for tracking. Conventional snakes approaches
for tracking ([9], [10], [6]) initialize the current frame snake with
the snake obtained in the previous frame and then optimize this
result considering only the cutrent frame information. In our
approach [13] motion estimation is embedded in the energy
minimization process of the snake. This is possible using a
dynamic programming approach for this minimization. This
allows for large displacements of the contour and for a more
robust tracking.

3.1 Snakes

In the discrete formulation of active contour models the contour
to be tracked is represented as a set of snaxels v;=(x,y;) for
i=0,...,N-1, where x; and y; are the x and y coordinates of the



snaxel /, and its energy, which has to be minimized, is defined
by:
N-1
E e ) = Y (B (V) + E,, ()
i=0
We use a discrete approximation of the second derivative to
compute E,.

E. = lv” (s)| =~ llvi_, =2v,+v,, 2)

This is an approximation to the curvature of the contour at snaxel
i, if the snaxels are equidistant. We will force the snaxels to be
equidistant when the snaxel is initialized in the first image. A is a
constant introduced to select the relative importance between the
internal and external forces.
Actually, this is only valid for snaxels which are not corners of
the contour. In the case of corners the energy has to be low when
this second derivative is high. We use:
Emz(v;):m‘vpx —2, +Vi+l| +(1-4 )(B_l"ifn —2, +"i+1m
©)]
where f; is set to [ if v; is not a corner point and to 0 if it is. B
represents the maximum value that the approximation to the
second derivative can take.
The purposc of the term E,,, is to attract the snake to desired
feature points or contours in the image. In this work we have
used the mean value of the image (/(x,y)), along the contour from
v; to v;,;, as the eyelids can generally be modeled by a dark line.
Besides, we have approximated the contour between v; and vy
by a straight line.
Thus, the E,,, at snaxel v; will depend only on the position of the
snaxels v; and v;, ;. That is,

Eexl (V,») = E'L‘muupv,v+I = f(l’ vi ’vi+l) (4)

Taking into account the local dependencies of the Energy of the
snake, we can express it as:

hH

N N-l
E )= ZE.m(Vx-l VoV ) FE )= ZE, ViV V) o)
=0 i=0

This energy, for open snakes, can be computed recursively using
a Dynamic Programming algorithm [2]. We have followed the
approach proposed in [7] that performs the minimization for
closed snakes in two open contour optimization steps [13].

3.2 Introducing motion estimation

To perform the optimization in the DP approach we need to have
for every snaxel v; a finite (and hopefully small) number of
candidates. The computational complexity of each optimization
step is Ofnm’), where n is the number of snaxels and m the
number of candidates for every snaxel. Thus, it is very important
to maintain m low.

Different solutions to select these candidates that are not based in
motion estimation are proposed in [2], [6] and [7]. The solution
we propose uses motion estimation in order to select the search
space for every snaxel.

A small region around every snaxel is selected as basis for the
motion estimation. The shape of this region is rectangular and its
size is application dependent. This region should be small
enough so that its motion can be approximated by a translational
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motion. The compensation error for all the possible
displacements (dx,dy) of the block in a given range is computed
as:

J=RY2 j=Rx2

MCE, (dx,dyy =Y 3 [1(xy =iy, = D= 1(x, ~i=dx, y, ~ j—dy)’
Ja-Rvbis-Ryl
©6)

Being (xg yo) the x and y coordinates of the snaxel v; in the
previous frame, which we have called v;. The region under
consideration for the motion estimation is centered at the snaxel
and with sizec (Rx/+Rx2) in the horizontal dimension and
{Ryl+Ry2) in the vertical dimension.

The range for (dx,dy) determines the maximum displacement that
a snaxel can suffer. The matrix MCE,i(dx,dy) is stored for every
snaxel, and the m best results are selected as possible new
locations for snaxel v;.

The DP algorithm is now applied considering as candidates for
every snaxel those locations that have been selected by the
motion estimation algorithm.

Besides, we have introduced a new term in the external Encrgy.
This new term introduced in the E,, improves the tracking
capabilities of the algorithm. It is a memory term which
corresponds to the compensation error obtained in the motion
estimation. [n this way preference is given to those positions with
the smaller compensation crror. That is, the energy will be lower
in those positions which texture is most similar to the texture
around the position of the corresponding snaxel in the previous
frame. Thus, the external energy will be composed of two terms,
the one which makes the snake be attracted by contours of the
image, and this new one. Its expression will thus be:

B ()=, +(1=VIMCE, (v)

The constant y can be set depending on thc strength of the
contour that is being tracked. If it is a strong contour we will
make yapproach 1. Otherwise, we will give more importance to
the Motion Compensation Error term.

@)

3.3 Tracking of the eyelids

A closed snake with two corner points will be defined to track
the eyelids. This snake is built by selecting a small percentage of
the pixels that describe the contour, as obtained in Section 2. It is
important to take as snaxels those position which are corners of
the contour and mark them as corners. Besides, the number of
snaxels selected should be large enough so that'if there are any
errors in the motion estimation, they can be necutralized by
neighbor snaxels.

Motion compensation errors MCE,;o(dx,dy) are computed for
every snaxel v;, within a given range of allowed displacements
for (dx,dy). The size of the block that we have used is 4x4 for the
images shown in the examples, which are 350x286 pixels large.
The shape of the blocks has been adapted because there are big
changes in the texture inside the eyes due to their closure or
opening. Thus, we have placed the block above the snaxels in the
upper eyelid and below the snaxels in the lower eyelid.



Thosc pixels (xp+dx, yp+dy) in the successive frame
corresponding to the displacements (dx,dy) which produced a
smaller compensation error are selected as possible candidates
for snaxel v; in this frame

Once the candidates for every snaxel have been chosen, the two
steps DP algorithm is run. The constant A has been sct
heuristically to 2 and yto 0.5.

Examples of the results obtained for different sequences of the
M2VTS face database [11] are presented in Figure 2. We show 2
images of each scquence, among which there is rotation of the
head and blinking of the eyes. Larger rotations, where the eycs
are partially occluded are not supported by this method.

Figure3. Examples of eye detection and tracking. The dots
represent the snaxel position.

4. CONCLUSIONS

We have presented a method for automatic cxtraction and
tracking of the eyelids. The extraction is based in morphological
filtering and a minimal path algorithm that only restricts partially
the shape of the eyes, thus allowing different eye shapes which
cannot be modeled by two semi-clipses. The tracking of the
detected contour has been performed with a new active contour
algorithm that uses motion estimation for a more robust tracking.
This approach to the tracking reduccs the computational cost
with respect to other DP implementations, as only a small
number of pixels have to be considered as candidates for every
snaxel. It allows to track contours which are not the global
minimum, as the snake is actually tracking the texturc around the
snaxel and it is much more robust to deformations and large
motion of the contours than the classical approachcs.
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